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Abstract— This paper describes a new method that en-
ables time domain pulsed RF measurements with any sub-
sampling system. The method consists of replacing the FFT
with a rectangular windowed short-time Fourier transform
(STFT). The algorithm automatically extracts Fourier co-
efficients within the pulses and the system does not need
any trigger signal or clocking circuit. This minimal software
modification enhances the standard Large Signal Network
Analyzer (LSNA) , enabling pulsed measurements without
any hardware modifications. Our algorithm has been tested
with a wideband amplifier at 1.5 GHz.

Index Terms—Pulsed RF, time domain measurement,
multi-harmonic, large signal network analyzer (LSNA).

I. INTRODUCTION

Some muti-harmonic large signal measurements on high
power transistors have to be performed with pulsed RF
signals in order to minimize dissipated power. A non-
linear network analyzer (NVNA) [1] performs pulsed
measurements using averaging resulting from the narrow-
band frequency domain approach [2]. Currently, measuring
time-domain waveforms with a conventional LSNA [3] is
not possible under pulsed RF conditions. A stroboscopic
approach has been demonstrated in e.g. [4][5] but requires
complex hardware modifications. In contrast, the work
described in this paper presents a new method that enables
pulsed RF measurements using an existing LSNA with
no additional hadware requirements. The method requires
substituting the FFT applied to raw data by a Short
Time Fourier Transform (STFT). The method is applied
at 1.5GHz to a wide-band amplifier using a subsampling
system.

VNA and NVNA setups perform RF pulsed measure-
ments in frequency domain and can be calibrated in CW
mode. During the pulsed RF measurements, only the
power at the center frequency (power P; ) is measured
and RF pulsed P, is calculated as [6] :
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where 7, is the pulse width and T' the pulse repetition
rate. Such measurements are performed sequentially at fy
and several harmonics when using an NVNA in order to
extract the RF time domain waveform within the pulse [2].

Unfortunately, for a sampler based setup such as a
LSNA, due to the compressive nature of the sub-sampling,
aliasing prevents retrieving information in the frequency
domain, illustrated on Fig. 1 using raw data for 7, =
10pus and T' = 100us. The aliasing problem can be
surcumvented by sorting the ADC samples [4] [5]. Al-
thought this method does not reduce dynamic range, but it
requires accurate timing and triggering accompanied with
a complex circuitry.
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Fig. . Raw data from a LSNA during 10xs/100us (7,/T) pulsed RF
measurements. The time-domain data (left) is transformed with a FFT
resulting in spectrum aliasing (right) which prevents standard frequency
domain analysis. The LSNA configuration is detailed on Table I.

An alternate approach, decribed theoreticaly in the next
section, replaces standart frequency analysis with a time-
frequency analysis assuming that the pulsed RF signal is
a multi-harmonic CW. No hardware modification of the
LSNA is required. Furthemore, we do not have to know
the pulse duration or period as in the NVNA solution.

II. MATHEMATICAL BACKGROUND

In this part, x (¢) denotes a signal acquired on a LSNA’s
ADC. Let us consider a dictionary as :

D = {¥k}per @)

As long as the dictionnary is an orthonormal basis, any
finite energy signal x (¢) can be represented by its inner-
product coefficients :
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where ), is the complex conjugate of 1y,.

We can calculate a linear approximation that projects

the signal in a space of lowest possible dimension. The



signal energy is concentrated over a fewer set of vectors :
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CW time-domain measurements with a LSNA are based
on Fourier analysis. In this case, the dictionary used to
project a signal (2) is defined as :

D = {¢s (t) = ™21} )
and therefore 3-4 became :
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e(t)=| X(fe2mltdf 6)
+xc ) )
X (f) =<z, ¢yp) = z(t)e I 2mftqgr (7)
and equation (4) becomes :
z(t) ~ ZX (k.fo) €22 mk-fot (8)
k

where fy is the fundamental frequency and the set of
values for k defines the frequency grid for harmonic
analysis as we define it in an harmonic balance simulation
or a LSNA measurement [7]. The Fourier transform is
valid only for linear time-invariant systems. Thus, FFT
based LSNA measurements are well suited only for CW
measurements.

For nonstationary signals, Gabor [8] introduced a
time/frequency description thanks to a local Fourier anal-
ysis with sliding Gaussian window. Stationarity is as-
sumed within the window. The continuous-time Short-time
Fourier transform is defined as :

D= {s,(t) =w(t—7).d2mIt} o)
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Usually, the window function w (t) is real and gaussian
in order to generate a bandlimited atom in the time-
frequency plane. In this work, we apply a rectangular
window that is well suited for multi-harmonic CW signals
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The idea is to perform an exact sliding FFT on the
signal x (t). This signal is assumed to be multi-harmonic
as x (t) = >, Ag.e72™k-Jo where f, is the fundamental
frequency. The rectangular window width is equal to the
period of the fundamental frequency. It ensures no aliasing

in the calculation of X (f,7) thanks to the location of the
zeros in the window’s frequency response (sinc function).
Then the dictionnary can be written as :

Yr,r (1) = Peaby (t —7) (12)
with 4

Pk — fo.e].2.7r.k:.fo.‘r (13)

and ,
Yk () = IL(fo.t) e 2mhdot (14)

Py, is a normalization factor that ensures :
+50

Vi (t) dt = 1 (15)
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and a phase self consistance of the inner-product for every
value of 7.
According to equation (10), the Fourier coefficients are :

X (k-fo,7) = Pr.x (t) % ¢y () (16)

When z (¢) is periodic, equation (16) becomes a circular
convolution, and the STFT is better calculated in the
frequency domain according to :

X (k.fo,7) = Pp.F Y {X (f) U (f)} (I7)

where X (f) and Wy (f) are the Fourier transform of
the signal z (¢) and the window vy, (t), respectively. The
operator F ! {e} denotes inverse Fourier transform. In
our computer implementation, X (f) is calculated at every
measurement acquisition, but Wy (f) is calculated for all
values of the frequency parameter k just once, before
measurements, during the setup initialization.

III. LSNA MEASUREMENTS EXAMPLE

The new algorithm, based on equation (17), has been
embedded in the LSNA software to replace the standard
FFT. RF measurements were performed on an ultra wide-
band amplifier [9] in order to measure harmonics at the
output of the DUT. The parameters used on the LSNA are
displayed in Table I. The amplifier is driven by a 100us
pulse period and several duty cycle values from 10% to
100% (CW). This amplifier was previously measured on
a commercial NVNA setup and exhibits the same time
domain waveforms for all those duty cycle values. For
this kind of characterization, a NVNA needs the duty cycle
value in order to correct the power as explained in equation
(1), but the LSNA can adaptively sample the pulsed RF
and extract automaticaly the correct RF magnitudes and
phases within the pulse irrespective of its width. The
minimal measurable pulse width has to be larger than the
intermediate fundamental frequency period (8us in this
example).

In our case, ADCs are not triggered and the pulse
time-location is totally arbitrary at every measurement.



TABLE I
LSNA CONFIGURATION USED IN THIS PAPER

[ Parameter [ Value |
RF frequency 1.5 GHz
Number of harmonics 4
[ FracN frequency [ 19.998333 MHz |
ADC frequency 20 MHz
ADC number of points 20 000
ADC FFT bins of interrest 126, 251, 376 and 501
IF fundamental 125 kHz
Analyzing window width 8 us

A gate profile is then defined thanks to a thereshold
level on the |X (k.fo,t)| trace in order to extract Fourier
coefficients into the pulses only. Figure 2 illustrates a raw
data aquisition on a LSNA channel and its STFT. Only the
coefficients located within the gate are taken into account.
In this example, the gate width is narrower than 2us.

time (us)

Fig. 2. Raw data measurement from the LSNA with a 10us/100us RF
pulse. Samples from ADC are display on the top. Magnitude of the STFT
(middle) and phase(bottom) for k € {1,2,3,4}.Gates (bold black) are
automatically defined thanks to a threshold algorithm. In average mode,
only X (k.fo,t) values located into those gates are averaged.

This measurement method make possible to extract RF
harmonic information at any time within the pulse such
as the envelope transient analysis. It is not limited to a
periodic frame for the RF modulation and may be usefull
for investigations with bursts of pulses conditions.

RF measurements performed with the LSNA are dis-
played in figure 3 as they appear to the user. Those
measurements are exported in an Agilent ADS CITlIfile as
CW measurements and a pulse profile could be exported
too as an envelope transcient simulation data-set.

IV. CONCLUSION

In this work, we discussed the theoretical foundations
and practical application of the pulsed multi-harmonic time
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Fig. 3. LSNA output RF voltage measurements on amplifier [9] loaded
with fifty ohms. The red curve remains for two watts output power.
The new algorithm has been embedded in the LSNA software. The
LSNA blindly acquires pulsed RF signals under different conditions :
10us/100us (top left), 5015/100us (top right) and CW (bottom left).
The standard FFT based method on CW measurements is illustrated as
well (bottom right).

domain waveforms approach for sub-sampling measure-
ments. This new method, intended to replace the FFT
applied on raw data, is adaptive and consistent with both
CW and pulsed RF signals. Only the FFT, has to be
modified in the standard LSNA software, and it could
be implemented within other sub-sampling downconverters
systems.
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