

Design-oriented measurements of high-efficiency PAs for high PAR signals using an NI-based platform

Zoya Popovic and Tibault Reveyrand

Department of Electrical, Computer and Energy Engineering

Outline

- Overview of approaches for improving efficiency at power back-off
- Supply modulation (envelope tracking)
 - GaN PA design (10GHz carrier)
 - Supply modulator (100MHz switching)
 - Integration and modeling
- Outphasing
 - Quasi-MMIC isolated and non-isolated
 - Measurements of load modulation internal to the PA
- Measurement challenges and approach to nonlinear measurements based on NI equipment in a LabView meta-instrument environment

Main challenges in PA design

- Challenge 1: efficiency drops as output power drops
- Challenge 2: efficient PAs are nonlinear
- Challenge 3: load can vary

Transmitter architectures

Doherty PA:

- 6dB back-off
- 2 RFPAs, different size and bias
- BW limitation

Outphasing (LINC)

- 2 saturated RFPAs
- Isolated and non-isolated

Envelope tracking

 RFPA and dynamic power supply

Zoya Popovic, University of Colorado, Boulder, 2015

Outline

- Overview of approaches for improving efficiency at power back-off
- Supply modulation (envelope tracking)
 - GaN PA design (10GHz carrier)
 - Supply modulator (100MHz switching)
 - Integration and modeling
- Outphasing
 - Quasi-MMIC isolated and non-isolated
 - Measurements of load modulation internal to the PA
 - Outphasing with supply modulation
- Measurement challenges and approach to nonlinear measurements based on NI equipment in a LabView meta-instrument environment

Supply-Modulated Transmitters

High-efficiency PA (e.g. harmonically-tuned)

Improve maximum PA efficiency at a chosen power level with sufficient bandwidth for broadband signals

Efficient Supply Modulator

Maintain PA efficiency at average power by varying the drain supply voltage Enable high slew rates for tracking broadband signals Introduce minimal reduction in overall efficiency

Linearization

Restore linearity by identifying sources of distortion to simplify DPD

Integration and packaging

Integrate supply modulator with PA with minimal loading

Thermal management

Integration of various drivers

$$PAE = \frac{\int_0^{V_{max}} f_{PDF}(V) \cdot [P_{out}(V) - P_{in}(V)] dV}{\int_0^{V_{max}} f_{PDF}(V) \cdot P_{DC}(V) dV}$$

High-efficiency PA design

- Transistor power dissipation dominates
 - Reduced conduction angle
 - Avoids v_{ds} - i_{ds} overlap, power dissipation
- Waveform shaping (e.g. class F)
 - Voltage squaring, current peaking
 - 2^{nd} harmonic short allows $2f_o$ current
 - 3^{rd} harmonic open allows $3f_o$ voltage

Effects of 2nd and 3rd harmonic

2nd harmonic and 2nd/3rd harmonic load pull for the TGF2023-10 GaN HEMT in chip/wire configuration biased at 28V drain voltage and with 300mA quiescent current.

	2 nd Harmonic	2 nd /3 rd Harmonic
Output Power	31.6W	31.6W
Drain Efficiency	77%	85%
Power Consumed	41.0W	37.2W
Power Dissipated	9.4W	5.6W

High-Efficiency PA Design for SM

- PA design has to take into account:
 - small signal gain
 - efficiency and
 - output power over a range of supply voltages corresponding to an input envelope range
- Use TriQuint 0.15um GaN:
 - 20V CW
 - 100um SiC substrate
 - 60um diameter vias
 - 240, 300 and 1200 pF/mm^2
 - $50\Omega/sq$ TaN resistors

Parameter	Condition	Typical
ΙΜΑΧ	Vds = 20 V	1.15 A/mm
Peak Gm	Vds = 20 V	380 mS/mm
Vp	lds = 1 mA/mm	-3.5 V
BVGD	lg < 1mA/mm	50 V
Ft	20V-200mA/mm	38 GHz
FMAX	20V-200mA/mm	140 GHz

- Modeling:
 - Fit class Ab/B over a range of Vds
 - Pulsed IV at 25 and 85 deg C
 - S-parameters at 5, 10, 15, 20 V for Idq=10 and 100mA/mm

Load pull PAE and power tuned at Vd=20V

Example GaN15 reticle

High-Efficiency X-band MMIC PAs

Fixture

EM models for bondwires included in MMIC design

Examples of single PA X-band MMICs

Circuit B: 2-Stage MMIC, combi four 10x90um. 3.8mmx2.3mm

Circuit F

Single stage, two 10x100um 2.0mmx2.3mm

PAE from 9.5 to 12GHz

Single stage, 10x100um 3.8mmx2.3mm and 12x100um 2.0mmx2.3mm

Circuits D/ E

Static Supply Modulation Performance

X-band MMIC PAs – state-of-the-art

Zoya Popovic, University of Colorado, Boulder, 2015

GaN Integrated Supply Modulators

Zoya Popovic, University of Colorado, Boulder, 2015

Measured vs. simulated DSM

Zoya Popovic, University of Colorado, Boulder, 2015

PA performance with LTE signal

Zoya Popovic, University of Colorado, Boulder, 2015

Single-Chip Integrated ET-PA

Switcher drive inputs

RF VHF/UHF input

X-band input

MMIC carrier board

Integration Issues: Linearization

Supply modulator issues:

- Supply sensitivity
- High slew rate
- Dynamic load
- Linearization

- SM modulator gain and phase distortion
- RFPA gain variation with V_{supply}
- Path delay difference between the vin and Vsupply paths occurs when both v_{in} and V_{supply} are changing over time
- Nonlinear memory

Measured static drain impedance, fixed VDD

Vdd = 15V Vg1=-2.8V, Vg2=-3.75V

Trends similar to simulations.

Real part is high at low frequencies and decreases to reach 1.5Ω at 500MHz.

At saturation, the real part remains under 20 Ω .

At low power, the drain impedance is highly capacitive and becomes almost purely real at compression.

Is it worth it? – S-band results

•	Drive modulated conditions – Same W-CDMA signal		Drive (A)	Optimized Traj
	 Same PA Constant 32V V_{dd} 	Peak/Average Power	40W / 8.5W	40W / 8.5W
•	 Achieves similar linearity Power consumption 	RFPA drain eff.	30%	76%
	 ET requires 43% less power 	SM efficiency	N/A	69%
	 ET operates 75% longer from battery 	ACP at 5 / 10MHz	-57/-58.3 dBc	-55.7/-57.8dBc
•	Power dissipation	Transmitter efficiency	30%	52.5%
	 ET system produces 61% less heat 	Supply power	28.3W	16.4W

RF transistor operates
 86% cooler

PA Dissipation 19.8W, 100%

2.7W, 13.6% Total Dissipation 7.7W, 38.9%

EM Dissipation 5.0W, 25.3%

PA Dissipation

- Overview of approaches for improving efficiency at power back-off
- Supply modulation (envelope tracking)
 - GaN PA design (10GHz carrier)
 - Supply modulator (100MHz switching)
 - Integration and modeling
- Outphasing
 - Quasi-MMIC isolated and non-isolated
 - Measurements of load modulation internal to the PA
- Measurement challenges and approach to nonlinear measurements based on NI equipment in a LabView meta-instrument environment

PA element for outphasing PAs

- Single-stage
- Biased in class-B
- GaN MMIC PA (TriQuint 0.15 μm)
- 10 x 100 μm FET

- $V_{DD} = 20 \text{ V}, \text{ V}_{G} = -4.0 \text{ V}$
- $f_0 = 10.1 \text{ GHz}$
- Peak PAE = 70%
- P_{out} = 2.7 W
- Gain = 7.2 dB

Quasi-MMIC outphasing PA

Internal PA Load Modulation

Zoya Popovic, University of Colorado, Boulder, 2015

Isolated Outphasing PA

- Finite isolation yields minimal load modulation
- PAs rotate in opposite direction around contours
- 0.4 1.7 dB internal PA Pout imbalance caused by varying load

Non-Isolated Outphasing PA

- Load modulation shows slight CW rotation due to ±1.5 dB internal PA Pout imbalance
- Peak power occurs near peak PAE
- Minimum Pout of 3.6 dBm near edge of smith chart

Comparison

Isolated

- Peak Pout = 35.8 dBm / 36.8dBm
- Peak PAE = 41.6 % / 59%
- Integrated design: 1 dB less loss

Non-isolated

Peak Pout = 35.7 dBm / 37dBm Peak PAE = 41.5 % / 60% (L=1.3dB) 8 % improvement in PAE at 4 dB OPBO

Effect of Power Unbalance

Outline

- Overview of approaches for improving efficiency at power back-off
- Supply modulation (envelope tracking)
 - GaN PA design (10GHz carrier)
 - Supply modulator (100MHz switching)
 - Integration and modeling
- Outphasing
 - Quasi-MMIC isolated and non-isolated
 - Measurements of load modulation internal to the PA
 - Outphasing with supply modulation
- Measurement challenges and approach to nonlinear measurements based on NI equipment in a LabVIEW environment

RF instrumentation in LabVIEW: an equation to be solved

THE GOOD

- Build a GUI with two clicks ;
- Does not require any hard programming skills.

THE BAD

- LabVIEW code is difficult to read in big projects ;
- Mix of GUIs, algorithms and instrumentation drivers ;
- VISA interface is UNIVERSAL but...
- IVI is not:
 - Many DLLs ;
 - No universal handle manager in LabVIEW ;
 - Open/Closing sessions not convenient.

Nevertheless, there is a hope...

RF instrumentation is based on a very limited number of instruments:

- Power meters ;
- RF Sources ;
- DC power supplies ;
- Scopes ; and
- just one big analyzer.

A LabVIEW "open instrument"

"Redefining RF and Microwave Instrumentation with <u>open software and modular hardware</u>"

Existing approach on commercial PXI RF receiver

One single PXI module

Our approach for research and academics: open LSNA

Goal : improve flexibility and creativity for researchers and academics in instrumentation.

LabVIEW for RF instrumentation

Arrays of Instruments

Meta-Instrument

Instrument Managers

Arrays of instruments are defined by GUI and located in a global variable.

Array can be deleted by clicking on the X'.

IM Example: CW sources

Make your own VI

Here is the library

Generic MDIF file can be read by Keysight ADS Data Display and specific file formats for AWR Microwave Office

- Makes LabVIEW code lighter and clean ;
- Generic Library highlights concepts more than drivers and acquisition protocol;
- Data-set fully integrated to simulation platform for direct measurement/simulation comparison ;

Meta-instrument example: 2-port LSNA bench

Bench example, 2 ports

varrie	Setup VI
LSNA - 1P	8
DC	Downconverter
Receiver Channe	el Active Frequency (Hz)
Scope USB 🥂 0	9.99E+8
Scope USB \bigtriangledown 1	FracN
Scope USB \bigtriangledown 2	Level (dBm)
Scope USB 🥂 3	Local Oscillator 🟹 🗍 10.4
W Source	Frequency Grid Freqlist (Hz)
RF Source C Level (dBm)	-10 Start 7 0 1E+9 2E+9
F Switch	Step FFT Bins
F Switch VISA Session Instrument Name	Step FFT Bins 1 0 1000 2000
F Switch VISA Session Instrument Name	Step FFT Bins 1 7 0 1000 2000 Number of points 7 0 1000 2000
F Switch VISA Session Instrument Name	Step FFT Bins 1 7 0 1000 2000 3 0 1000 2000 1000 2000 Unit Warning! 1000 2000 1000 2000

Calibration

Application: outphasing PAs

Measurements of internal load modulation

Requires Three identical 2-port RF LSNAs, but with different calibration matrices and initialization scripts (to setup the RF switches)

Measuring internal load modulation

	Setup VI				
LSNA - 1P	8				
ADC	Downconver	ter			
Receiver C	hannel Active	Frequ	ency (Hz)		
Scope USB	0	9.99	E+8		
Scope USB	1 FracN				
Scope USB	2		Level (dBm)	1	
Scope USB	3 Local	Oscillator 🔽	10.4		
RF Switch	() 1 Sto	ep	<u> </u>	FFT Bins	J2E+9
VISA Session Instrument N	ame 71	under of noints	0	1000	2000
None None	√ /3		0	1000	2000
	Uni	it	Warning!	1000	2000
		GHz \bigtriangledown	-	1000	2000

1. Create an LSNA and copy it twice

3. Each of the 3 LSNAs is calibrated independently.

2. Update the field Setup VI with the script to enable the correct RF-switch position.

4. All LSNA measurements are performed sequentially in just one call.

Measuring envelope tracking PAs

LF S-parameters under large signal condition is a minimal configuration to optimize filter between the LF modulator (PWM signal) and the RF-PA (Analog signal)

ET PA measurement

Create 2 different LSNAs. One includes a

downconverter, the other one doesn't.

Each LSNA is related to its calibration matrix.

х LSNA_MGR.vi LSNA MANAGER Name ADD LSNA - 1P COPY EDIT DELETE STOP CALIBRATI INIT MEAS. CAL TEST CLOSE LO 🧉

All LSNA measurements will be performed sequentially in a single 'LSNA Measurements" call

Measurements performed in LF 1 port LSNA + Power meters for the moment

Low-frequency LSNA

Problem to solve: Transistor models do not predict lowfrequency (modulation) drain terminal impedance

Example: Extracting a model...

Example: comparison

Measurements:

Converted in Generic MDIF and loaded directly in the data display

✓ Append Generic MDIF Read CITIFile

Simulations:

Performed for the same sweep range

Comparison in the simulation platform

Example: results

Example: self-characterization

- Samplers characterized with NI PXI-5922 (15MS/s)
- Data displayed in Keysight ADS Goal is to display in AWR MWO (but this needs improved Generic MDIF file format)

Zoya Popovic, University of Colorado, Boulder, 2015

- LAbVIEW-based LSNA under development
- Enables non-standard design-oriented measurements in a modular flexible fashion
- Measurement capability already demonstrated through several design applications:
 - Internal load modulation in outphasing PAs
 - Low-frequency drain impedance measurements under large-signal RF carrier excitation for a ET-PA

