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Abstract  —  The characterization and the modeling of
nonlinear memory effects are, nowadays, an integral part of
the design process of modern communication systems.
Notably, the nonlinear long term memory effects occurring in
solid state devices impact considerably system performances.
Recently, a new method to characterize and integrate low
frequency memory effects in nonlinear behavioral models of
SSPAs has been presented [1]. This paper presents a detailed
mathematical study and a measurement based extraction
principle of the proposed behavioral model. Calibrated time-
domain envelope measurements are used for the model
extraction and verification procedures. The extraction
technique is illustrated by the modeling of a L-Band HFET
amplifier.

I. INTRODUCTION

Long term nonlinear dispersive effects standing in solid
state power amplifiers  are basically due to biasing circuits
embedding active cells and to thermal phenomena.

One of the main challenge of the behavioral modeling is
first to integrate an accurate description of high frequency
and low frequency memory effects and secondly to enable
an accurate prediction of power amplifiers performances
in real working conditions (digitally modulated multitones
– chirps – … ). It appears that, in all modern wireless
applications, the distortions caused by power amplifiers
result mainly from the combination of nonlinearity and
long term memory effects.

Recently, a new modeling approach, based on nonlinear
impulse response notion, has been presented [1]. The
comparisons between circuit simulations and model
predictions have shown the good capabilities of the
proposed model to predict long term memory effects.

In the continuity of these works, this paper presents a
detailed mathematical study of the approach showing
clearly that the adopted impulse response formulation is an
effective extension of the Volterra series expansion for
band-pass applications modeling.  This study is followed
by the presentation of a calibrated procedure to extract the
model from experimental data. Modeling results of a
HFET L-Band mid-power amplifier, based on calibrated
time-domain envelope measurement setup, are shown.

II. NONLINEAR IMPULSE RESPONSE MODEL

Consider ( ) ( ) 



ℜ= tjetXetx ...
~ 0ω  and ( ) ( ) 



ℜ= tjetYety ...
~ 0ω

the band-pass input and output signals of a nonlinear
system. We would like to identify an effective
mathematical description of the relationship between the

input and output envelopes, ( )tX
~

 and ( )tY
~

, of the system.

Note that the reference frequency 0ω  in the expressions of

the input/output signals, ( )tx  and ( )ty ,  is taken equal to

the center frequency of the system operating bandwidth.

The output response at a given time of the system
depends on input signal at the same time instant and also
input signal at preceding instants in the limit of the
memory duration mT  of the system.  Therefore,

considering a sufficiently small sampling time step, the
output response can be written in the following discrete
form :
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MnMnnnNLn tXtXtXtXftY −−= �   (1)

where )(
~

intX −  represents the input signal envelope at

instant int − . The function ( )�NLf  is a ( 1+M )

dimensional nonlinear characteristic.

From (1), the common approach has been to consider a
power series expansion of the characteristic ( )�NLf

around ( ) ( )nin tZtX
~~ =− , Mi ,,0�= as expressed in (2)

below.

If we consider the power series expansion (2) around the

time varying envelope DC state ( ) ( ) itXtX nin ∀=−
~~

, we

obtain the modified Volterra expansion reported in [2-4],
which is a powerful formalism. However, due to the
complexity of the identification of the power series
decomposition terms, we can practically apply it only up
to the first order.
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with ( ) ( ) ( )nknkn tZtXtX
~~~ −=∆ −−

Although as shown in [2-4], a first order truncation of
this series offers a fairly accurate modeling even for highly
nonlinear systems, its efficiency tends to be limited only to
those systems where the nonlinear memory duration mT  is

sufficiency small compared to the inverse of the bandwidth

of the envelope signal )(
~

tX . Unfortunately, it is shown

that most of solid state power modules, exhibit an effective
nonlinear memory duration much longer than the inverse
of their operating bandwidth especially because of bias
circuit modulation effects and thermal effects [5].

In order to handle more effectively long term memory
effects while considering still a first order truncation of the
series, we propose in this paper a slightly modified type of
expansion of the discrete characteristic in (1). That is,
instead of using a power series decomposition (i.e.
polynomial), we propose to use arbitrary nonlinear
functions, which are determined a posteriori, i.e. :
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Thus, we see that (2) is a particular case of (3) where the

kernels ( ) ( )( )kpnknkpk tXtXf −− ∆∆ ~
,,

~
11 �

L

 are polynomials

of order p . Especially, the first term in (2) is a linear

function of the signal displacement ( )1
~

kntX −∆  and

( )1
*~

kntX −∆ .
The first term in the expansion (3), ( )�1kf , is not

constrained to be a linear function of the input signal
displacement, as it is the case in the power series
expansion. For this reason, we can intuitively think that
such a development even truncated at the first order will
be more capable of predicting nonlinear effects and
particularly long term memory effects as compared to a
first order power series truncation. We may either consider

a decomposition around the point ( ) 0
~ =ntZ  or around the

point ( ) ( )nn tXtZ
~~ = , in a similar way to respectively the

classical Volterra series expansion and the dynamic
Volterra series expansion. In this paper, for a sake of
simplicity, we will consider a decomposition around

( ) 0
~ =ntZ . In this case, a first order truncation of the series

results to :

( ) ( ) ( )( )∑
=

−−=
M

k
knknkn tXtXftY

0

*~
,

~~
 (4)

Equation (4) is a statement that the output signal at a
given time instant nt  is a sum of the system responses to

the individual elementary input pulses ( )kntX −
~

 along the

history Mk ,,0�= . It assumes that each elementary
input pulse propagates nonlinearly through the system but
sums up linearly.

Normalizing (4) by a constant sampling time step

1−−=∆ nn ttt  and taking the limit as 0→∆t , we obtain

the following integral form.

( ) ( ) ( )( )∫ −−=
Tm

dtXtXftY
0

* .,
~

,
~~~ ττττ    (5)

Now it is useful to express the envelope signal ( )tX
~

 as :

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )∫

∫

Ω−
∆−∆

Ω
∆∆

==

==
t

dXj
tXj

t
dXj

tXj

etXetXtX

etXetXtX

0

.~.
~.*

0

.~.
~.

.
~

.
~~

.
~

.
~~

ττ
ϕ

ττ
ϕ

     (6)

where ( )tX
~

 and ( )tX
~Ω  are respectively the magnitude

and the instantaneous frequency of the envelope ( )tX
~

. In

(1), we expressed the output envelope ( )tY
~

 as being a

function of ( )tX
~

 and its conjugate ( )tX *~
. From (6), we

see that we may equally express ( )tY
~

 as a function of the
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magnitude ( )tX
~

and instantaneous frequency ( )tX
~Ω . So

equation (6) can be rewritten, as below :

( ) ( ) ( )( )∫ −Ω−=
Tm

X dttXftY
0

~ .,,
~~~ ττττ      (7)

It is interesting to rewrite (7) in the classical form of a
convolution integral, by defining :

( ) ( )( ) ( ) ( )( )
( )τ

τττ
τττ

−

−Ω−
=−Ω−
∆

tX

ttXf
ttXh X

X ~
,,

~~

,,
~~ ~

~   (8)

The kernel ( ) ( )( )τττ ,,
~~

~ −Ω− ttXh X  will be termed

“nonlinear impulse response” of the system and depends
on the magnitude and the instantaneous frequency of the
input envelope signal.

In narrow-band applications, which is common case in
most modern communication systems, the dependence of

( )�h
~

to the instantaneous frequency is small and thus can

be neglected. In such conditions, we can simplify the
previous equation by neglecting the instantaneous
frequency ( )tX

~Ω , which reduces the model expression to:

( ) ( )( ) ( )∫ −−=
Tm

dtXtXhtY
0

.
~

.,
~~~ τττ     (9)

Thus, the system characterization requires the extraction

of the nonlinear impulse response ( )�h
~

. The important

thing with the new model is that its single kernel ( )�h
~

 can

be readily and easily obtained by using existing simulation
tools or time-domain measurement setups [6], as will be
outlined in the next section. We will limit ourselves below
to the model equation (9) for sake of conciseness.

The observation of equation (9) shows that the nonlinear
impulse response can be easily obtained by driving the
system with a unit step function

( ) ( ) 



ℜ= tj

etUXetx
.... 0

0
ω , where 0ω  (reference

frequency) is set to the center frequency of the system

bandwidth. The nonlinear impulse response ( )�h
~

 can thus

be readily obtained considering the time derivative of the

envelope response ( )�UY
~

 of the device to the step

function excitation as expressed below.
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t
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,
~ 0

0
0           (10)

III. A PPLICATION TO THE MODELING OF A HFET
AMPLIFIER

A calibrated time-domain measurement setup [7] has
been built in order to characterize an HFET mid-power
amplifier. This is a two stage hybrid HFET mid-power
amplifier with an output power of 350 mW operating at
1.6 GHz. Time-domain envelope measurements are used
to carry the kernel extraction process outlined above.

The setup is based on frequency translations of complex
envelope with I/Q modulator and demodulator. The base-
band signal is synthesized using an arbitrary waveform
generator (AWG), as depicted in Fig. 1. Then, this signal
is up-converted to the operating RF frequency of the
device by the modulator. The device output signal is
down-converted back to the base-band by using the
demodulator, and is stored in a digital oscilloscope (TDS).
Input and output envelope acquisitions are carried out
simultaneously to avoid the possible drifts of phase of the
local oscillator.
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Fig. 1.  Time-Domain measurement setup used for model
extraction

The reception channels are calibrated to correctly de-
embed envelopes at the DUT reference plans. The
equipments used (Tektronix TDS 754D) provide a 40 dBc
measurement dynamic, which results in non negligible
errors on extracted impulse responses, that are minimized
using smoothing functions.

The measured step responses of the amplifier are
presented on Fig. 2 as time varying gain amplitude and
phase for different input powers.

Then, comparison between amplifier measurements and
the model predictions has been performed for two types of
significant input stimuli. Fig. 3 shows the third order
intermodulation (IM3) curves obtained as a function of
the two tones frequency spacing ranging from –0.5 MHz
to 0.5 MHz and an input power ranging from 0 to 3 dB
gain compression.
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Fig. 2.  Amplifier step responses : amplitude (a) and phase (b) of
input/output gain

14

18

22

26

30

34

38

42

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Tones spacing (MHz)

IM
3 

(d
B

c)

Measurements Nonlinear impulse response model

3LQ� �����G%P

3LQ� �����G%P

3LQ� �����G%P

3LQ� �����G%P

3LQ� �����G%P

Fig. 3.  IM3 measured and simulated vs tones spacing and input
power

We can observe that the proposed model provides a
good prediction of the nonlinearity and memory effects.
The deep resonance of IM3 curves for small tones spacing
shows the presence of important low frequency memory
effects. The oscillations observed on the model output are
a result of the small dynamic of the measurement setup.

We have also tested the model when it is driven by a
QPSK modulated signal with 1 MB/s bit rate. Fig. 4 shows
a short time windows of the output envelope waveform
obtained by measurement and the model prediction.
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A large improvement of the prediction with respect to
the classical memory less model is obtained, showing the
good versatility of the proposed model.

IV. CONCLUSION

An improved behavioral modeling technique has been
presented. The proposed model provides an accurate
prediction of the low frequency memory effects, which
will improve reliability in system design and verification.
Its extraction principle is simple and has been proved by
extracting the model of a space qualified HFET amplifier
from a time-domain measurement setup. The good
prediction of the amplifier output obtained for two types of
stimuli different from the stimuli used for model extraction
have shown the effectiveness of the proposed approach.
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