

Design-oriented measurements of high-efficiency PAs for high PAR signals using an NI-based platform

Zoya Popovic and Tibault Reveyrand

ECEE, University of Colorado, Boulder

May, 23rd 2016

Outline

Overview of approaches for improving efficiency at power back-off

- Supply modulation (envelope tracking)
 - GaN PA design (10GHz carrier)
 - Supply modulator (100MHz switching)
 - Integration and modeling
- Outphasing
 - Quasi-MMIC isolated and non-isolated
 - Measurements of load modulation internal to the PA
 - Outphasing with supply modulation
- Measurement challenges and approach to nonlinear measurements based on NI equipment in a LabView metainstrument environment

Main challenges in PA design

- Challenge 1: efficiency drops as output power drops
- Challenge 2: efficient PAs are nonlinear
- Challenge 3: load can vary

Amplifying high PAR signals

- Efficiency of RF front ends dictated by PA efficiency
- High-efficiency PAs are:
 - o efficient only at peak power
 - o highly nonlinear
- Approaches for efficiency enhancement for high PAR signals involve adding a second amplifier:
 - o Doherty PA
 - o Outphasing (Chireix)
 - Envelope tracking (ET)

Outline

- Overview of approaches for improving efficiency at power back-off
- Supply modulation (envelope tracking)
 - GaN PA design (10GHz carrier)
 - Supply modulator (100MHz switching)
 - Integration and modeling
- Outphasing
 - Quasi-MMIC isolated and non-isolated
 - Measurements of load modulation internal to the PA
 - Outphasing with supply modulation
- Measurement challenges and approach to nonlinear measurements based on NI equipment in a LabView metainstrument environment

Supply modulation (Envelope Tracking)

May, 23rd 2016

Example of a GaN MMIC X-band PA

- Pout>12W, PAE>65%
- Gsat>20dB, f=10GHz
- Qorvo GaN15 process
- Modelithics nonlinear model

Measured Pout and Gain

May, 23rd 2016

MMIC characterization

EM models for bondwires included in MMIC design

May, 23rd 2016

Static PAE vs. Pout

- Measured PAE of 10-W MMIC PA at 10GHz for a range of supply voltages
- PAE>60% over 6dB backoff

May, 23rd 2016

Real signal, integrated transmitter

- G = 18dB (constant)
- Both stages supply-modulated
- For reasonable AM/AM, 11V of voltage dynamic of the drain supply
- At low Vdd, gain drops
- Increasing gate bias voltage may improve the achievable dynamic range

PA MMIC EG0490A, two stages, 10W

Signal Characteristics

Example: LTE 18MHz 3GPP standard signal, envelope transient simulation

Example GaN Supply Modulator

100 MHz, η>90% 10W peak 2.4 × 2.3mm, QFN package

• Switchers with integrated gate

Measured vs. simulated DSM

May, 23rd 2016

PA performance with LTE signal

Measured static drain impedance, fixed VDD

Connecting Minds, Exchanging Ideas,

Vdd = 15V Vg1=-2.8V, Vg2=-3.75V

- Trends similar to simulations.
- Real part is high at low frequencies and decreases to reach 1.5Ω at 500MHz.
- At saturation, the real part remains under 20 Ω .

At low power, the drain impedance is highly capacitive and becomes almost purely real at compression.

May, 23rd 2016

Outline

- Overview of approaches for improving efficiency at power back-off
- > Supply modulation (envelope tracking)
 - GaN PA design (10GHz carrier)
 - Supply modulator (100MHz switching)
 - Integration and modeling

Outphasing

- Quasi-MMIC isolated and non-isolated
- Measurements of load modulation internal to the PA
- Outphasing with supply modulation
- Measurement challenges and approach to nonlinear measurements based on NI equipment in a LabView metainstrument environment

Quasi-MMIC outphasing PA

PA element for outphasing PAs

3.8 mm

- Single-stage
- Biased in class-B
- GaN MMIC PA (TriQuint 0.15 μ m)
- 10 x 100 µm FET

ARFTG

- $V_{DD} = 20 \text{ V}, V_G = -4.0 \text{ V}$
- $f_0 = 10.1 \text{ GHz}$
- Peak PAE = 70%
- $P_{out} = 2.7 W$
- Gain = 7.2 dB

May, 23rd 2016

Isolated combiner

- 180° rat-race
- 30 mil Ro4350B
- < 1.4 dB loss

May, 23rd 2016

- 22.5 dB isolation
- > 19.5 dB return loss

- 4.5° sum port phase
- 173° diff port phase

Non-isolated Combiner

- Shunt susceptances and tuned 90° TLs
- Load modulation intersects at peak PAE load
- Internal PA power balance reasonably maintained

Internal PA Load Modulation

May, 23rd 2016

Isolated Outphasing PA

- Finite isolation yields minimal load modulation
- PAs rotate in opposite direction around contours
- 0.4 1.7 dB internal PA Pout imbalance caused by varying load

Non-Isolated Outphasing PA

- Load modulation shows slight CW rotation due to ±1.5 dB internal PA Pout imbalance
- Peak power occurs near peak PAE
- Minimum Pout of 3.6 dBm near edge of smith chart

May, 23rd 2016

Comparison

- Peak Pout = 35.8 dBm / 36.8dBm
- Peak PAE = 41.6 % / 59%

May, 23rd 2016

Integrated design: 1 dB less loss

Peak Pout = 35.7 dBm / 37dBm Peak PAE = 41.5 % / 60% (L=1.3dB) 8 % improvement in PAE at 4 dB OPBO

Effect of Power Unbalance

May, 23rd 2016

Outline

- Overview of approaches for improving efficiency at power back-off
- > Supply modulation (envelope tracking)
 - GaN PA design (10GHz carrier)
 - Supply modulator (100MHz switching)
 - Integration and modeling
- Outphasing
 - Quasi-MMIC isolated and non-isolated
 - Measurements of load modulation internal to the PA
 - Outphasing with supply modulation
- Measurement challenges and approach to nonlinear measurements based on NI equipment in a LabView meta-instrument environment

May, 23rd 2016

RF instrumentation in LabVIEW

THE GOOD

- Build a GUI with two clicks ;
- Does not require any hard programming skills.

THE BAD

- LabVIEW code is difficult to read in big projects ;
- Mix of GUIs, algorithms and instrumentation drivers ;
- VISA interface is UNIVERSAL but...
- IVI is not:
 - Many DLLs ;
 - No universal handle manager in LabVIEW ;
 - Open/Closing sessions not convenient.

Nevertheless, there is a hope...

RF instrumentation is based on a very limited number of instruments:

- Power meters ;
- RF Sources ;
- DC power supplies ;
- Scopes ; and
- just one big analyzer.

May, 23rd 2016

Workshop WME

... and THE UGLY

RF instrumentation in LabVIEW

Arrays of Instruments

Meta-Instrument

May, 23rd 2016

LabVIEW Toolbox Principle

May, 23rd 2016

LabVIEW Toolbox Principle

Instrument Manager

Workshop WME

May, 23rd 2016

Instrument Manager Example

Complete Library

Global Variable BENCH.VI describes any bench...

Configuration Example: CW Source

Configuration Example: Load-Pull

May, 23rd 2016

Program Example: IV-S

May, 23rd 2016

Hardware Example: Source-Pull

Source-Pull removed for real impedance measurements (indeed, **cheaper than a Source Tuner**) Load-Pull measured like before (Power meter for receiver)

May, 23rd 2016

Hardware Example: LSNA

May, 23rd 2016

LSNA object in the Toolbox

- Once the bench is initialized, we can edit LSNAs ;
- LSNAs are managed as standard instruments: user defines an array of LSNAs;
- LSNA works like a scope but requires a calibration procedure and test ('CALIBRATE' and 'CAL TEST' buttons) to calculate and validate a 8terms error matrix;
- Each LSNA contains a hardware structure (next slide), calibration measurements and a 8-error term matrix ;
- Several LSNAs can have exactly the same hardware configuration (click on 'COPY' to do it). It enables to consider several error term matrix;
- 'MEAS.' perform a single point PA measurement before to launch user defined loops of acquisitions.

May, 23rd 2016

LSNA object in the Toolbox

May, 23rd 2016

LSNA Embedded Calibration

May, 23rd 2016

Develop your code!

A LSNA releases V and I data. "VI > RF" give access to common RF data

May, 23rd 2016

Envelop Tracking Example

LF S-parameters under large signal condition is a minimal configuration to optimize filter between the LF modulator (PWM signal) and the RF-PA (Analog signal)

May, 23rd 2016

Envelop Tracking Example

Envelop Tracking Example

May, 23rd 2016

- AVAILABLE

- FREE
- OPEN SOURCE

WWW.MICROWAVE.FR/LABVIEW

May, 23rd 2016

Thank you !

May, 23rd 2016